

MOS INTEGRATED CIRCUIT μ PD16772B

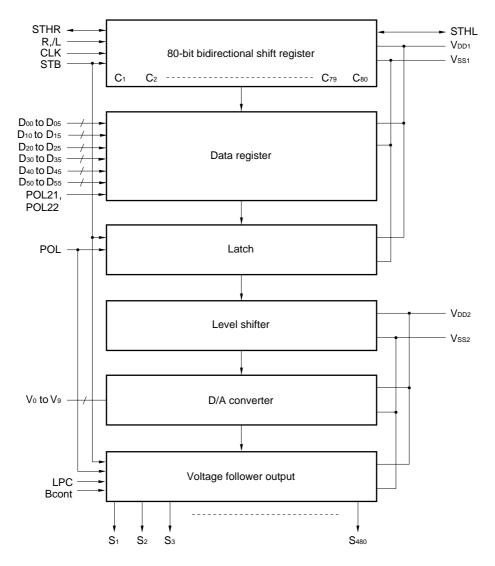
480-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

DESCRIPTION

The μ PD16772B is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as Vss₂ + 0.1 V to V_{DD2} – 0.1 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to UXGA-standard TFT-LCD panels.

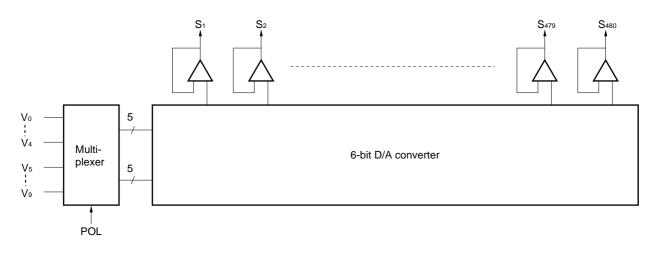
FEATURES

- CMOS level input (2.3 to 3.6 V)
- 480 outputs
- Input of 6 bits (gradation data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)
- \bullet Logic power supply voltage (VDD1): 2.3 to 3.6 V
- Driver power supply voltage (VDD2): 8.5 V \pm 0.5 V
- Output dynamic range: Vss2 + 0.1 V to VDD2 0.1 V
- High-speed data transfer: fcLK = 45 MHz (internal data transfer speed when operating at VDD1 = 2.3 V)
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output voltage polarity inversion function (POL)
- Display data inversion function (POL21, POL22)
- Current consumption reduction function (LPC, Bcont)

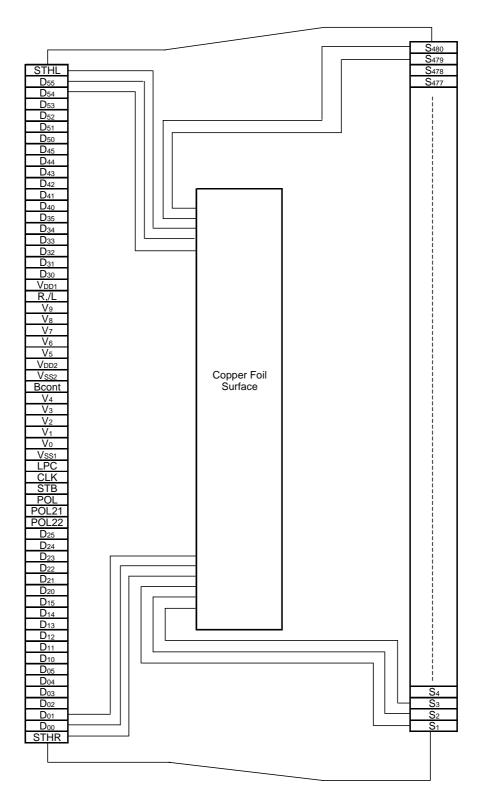

ORDERING INFORMATION

Part Number	Package
μ PD16772BN-xxx	TCP (TAB package)

Remark The TCP's external shape is customized. To order the required shape, so please contact one of our sales representatives.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 1. BLOCK DIAGRAM



Remark /xxx indicates active low signal.

★ 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

Remark This figure does not specify the TCP package.

(1/2)

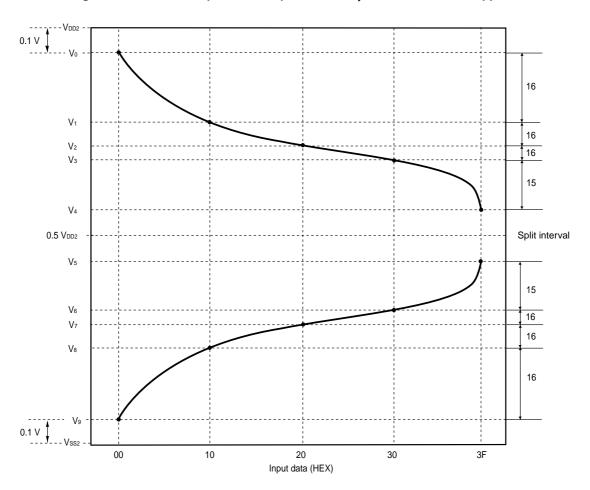
★ 4. PIN FUNCTIONS

Pin Symbol	Pin Name	I/O	Description
S1 to S480	Driver	Output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Dos	Display data	Input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6
D10 to D15			dots (2 pixels).
D20 to D25			Dxo: LSB, Dx5: MSB
D ₃₀ to D ₃₅			
D40 to D45			
D50 to D55			
R,/L	Shift direction control	Input	These refer to the start pulse I/O pins when driver ICs are connected in cascade.
			The shift directions of the shift registers are as follows.
			R,/L = H: STHR input, $S_1 \rightarrow S_{480}$, STHL output
			R,/L = L: STHL input, $S_{480} \rightarrow S_1$, STHR output
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade.
			Fetching of display data starts when H is read at the rising edge of CLK.
			R,/L = H (right shift): STHR input, STHL output
STHL	Left shift start pulse	I/O	R,/L = L (left shift): STHL input, STHR output
OTTLE	Left Shift Start puise	1/0	A high level should be input as the pulse of one cycle of the clock signal.
			If the start pulse input is more than 2 CLK, the fist 1 CLK of the high-level input is
			valid.
CLK	Shift clock	Input	Refers to the shift register's shift clock input. The display data is incorporated into
			the data register at the rising edge. At the rising edge of the 80 th clock after the start
			pulse input, the start pulse output reaches the high level, thus becoming the start
			pulse of the next-level driver. If 82 clock pulses are input after input of the start
			pulse, input of display data is halted automatically. The contents of the shift register
075			are cleared at the STB's rising edge.
STB	Latch	Input	The contents of the data register are transferred to the latch circuit at the rising
			edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is
POL	Polarity	Input	necessary to ensure input of one pulse per horizontal period. POL = L: The S_{2n-1} output uses V ₀ to V ₄ as the reference supply. The S_{2n} output
FOL	Folding	input	uses V_5 to V_9 as the reference supply. The S_{2n} output uses V_5 to V_9 as the reference supply.
			POL = H: The S _{2n-1} output uses V ₅ to V ₉ as the reference supply. The S _{2n} output
			uses V_0 to V_4 as the reference supply.
			S_{2n-1} indicates the odd output: and S_{2n} indicates the even output. Input of the POL
			signal is allowed the setup time(tPOL-STB) with respect to STB's rising edge.
POL21,	Data inversion	Input	Data inversion can invert when display data is loaded.
POL22			POL21, POL22 = H: Data inversion loads display data after inverting it.
			POL21, POL22 = L: Data inversion does not invert input data.
			POL21: D ₀₀ to D ₀₅ , D ₁₀ to D ₁₅ , D ₂₀ to D ₂₅
			POL22: D ₃₀ to D ₃₅ , D ₄₀ to D ₄₅ , D ₅₀ to D ₅₅
LPC	Low power control	Input	The current consumption of V_{DD2} is lowered by controlling the constant current
			source of the output amplifier. This pin is pulled up to the V_{DD1} power supply inside
			the IC. For details, see 9. CURRENT CONSUMPTION REDUCTION FUNCTION.
Bcont	Bias control	Input	This pin can be used to finely control the bias current inside the output amplifier.
			When this fine-control function is not required, leave this pin open. For details, see
			9. CURRENT CONSUMPTION REDUCTION FUNCTION.

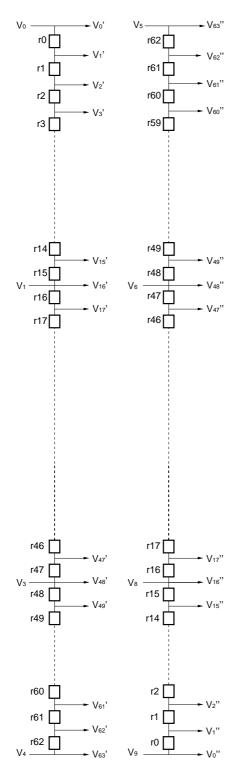
			(2/2)
Pin Symbol	Pin Name	I/O	Description
Vo to V9	γ-corrected power supplies	_	Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $V_{DD2} - 0.1 V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 V_{DD2}$ $0.5 V_{DD2} \ge V_5 > V_6 > V_7 > V_8 > V_9 \ge V_{SS2} + 0.1 V$
VDD1	Logic power supply	-	2.3 to 3.6 V
V _{DD2}	Driver power supply	-	$8.5 \text{ V} \pm 0.5 \text{ V}$
Vss1	Logic ground	-	Grounding
Vss2	Driver ground	-	Grounding

- Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0 to V9 is possible.).
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also advised between the γ -corrected power supply terminals (V₀, V₁, V₂,...., V₉) and V_{SS2}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE


The μ PD16772B incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V₀' to V₆₃' and V₀'' to V₆₃'' is almost equivalent. For the 2 sets of five γ -compensated power supplies, V₀ to V₄ and V₅ to V₉, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power supplies V₁ to V₃ and V₆ to V₈.


Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and V_{SS2}, common electrode potential V_{COM}, and γ -corrected voltages V₀ to V₉ and the input data. Be sure to maintain the voltage relationships as follows.

$$\begin{split} V_{DD2} & - 0.1 \ V \geq V_0 > V_1 > V_2 > V_3 > V_4 \geq 0.5 \ V_{DD2} \\ 0.5 \ V_{DD2} & \geq V_5 > V_6 > V_7 > V_8 > V_9 \geq \ V_{SS2} + 0.1 \ V \end{split}$$

Figure 5–2 shows γ -corrected power supply voltage and ladder resistors ratio and Figure 5–3 shows the relationship between the input data and the output voltage and the resistance values of the resistor strings.

rn	Value	Ratio (1)	Ratio (2)
r0	722	7.68	0.0454
r1	628	6.68	0.0395
r2	628	6.68	0.0395
r3	596	6.34	0.0375
r4	596	6.34	0.0375
r5	502	5.34	0.0315
r6	470	5.00	0.0295
r7	454	4.83	0.0285
r8	454	4.83	0.0285
r9	408	4.34	0.0256
r10	330	3.51	0.0207
r11 r12	298 266	3.17	0.0187
r12	266	2.83 2.83	0.0167
r14	200	2.63	0.0107
r15	230	2.31	0.0140
r16	220	2.34	0.0138
r17	204	2.17	0.0128
r18	172	1.83	0.0120
r19	156	1.66	0.0098
r20	156	1.66	0.0098
r21	142	1.51	0.0089
r22	142	1.51	0.0089
r23	142	1.51	0.0089
r24	142	1.51	0.0089
r25	126	1.34	0.0079
r26	126	1.34	0.0079
r27	110	1.17	0.0069
r28	110	1.17	0.0069
r29	110	1.17	0.0069
r30	110	1.17	0.0069
r31	110	1.17	0.0069
r32	110	1.17	0.0069
r33	110	1.17	0.0069
r34	94	1.00	0.0059
r35	94	1.00	0.0059
r36	94	1.00	0.0059
r37	110	1.17	0.0069
r38	110	1.17	0.0069
r39	94	1.00	0.0059
r40	110	1.17	0.0069
r41	94	1.00	0.0059
r42	110	1.17	0.0069
r43	94	1.00	0.0059
r44	110	1.17	0.0069
r45	126	1.34	0.0079
r46	110	1.17	0.0069
r47	110	1.17	0.0069
r48	110	1.17	0.0069
r49	126	1.34	0.0079
r50	126	1.34	0.0079
r51	126	1.34	0.0079
r52	142	1.51	0.0089
r53	142	1.51	0.0089
r54	126	1.34	0.0079
r55	188	2.00	0.0118
r56	188	2.00	0.0118
r57	220	2.34	0.0138
r58	220	2.34	0.0138
r59	236	2.51	0.0148
r60	360	3.83	0.0226
r61 r62	564 2022	6.00	0.0354
	2022	21.51	
rtotal	15912	169.28	1.0000

Figure 5–2. γ-corrected Power Supply Voltage and Ladder Resistors Ratio

Remark The resistance ratio1 is a relative ratio in the case of setting the minimum resistance value to 1. The resistance ratio2 is a relative ratio in the case of setting the total resistance to 1.

Caution There is no connection between V₄ and V₅ terminal in the chip.

\star

Figure 5–3. Relationship between Input Data and Output Voltage (POL21, POL22 = L)

(Output Voltage 1) $V_{DD2} - 0.1 V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 V_{DD2}$

(Output Voltage 2) 0.5 VDD2 \geq V5 > V6 > V7 > V8 > V9 \geq VSS2 + 0.1 V

Input Data		Output V	oltage1			Output	Voltage2	
00H	V _{0'}	V ₀			V _{0"}	V ₉		
01H	V _{1'}	$V_1 + (V_0 - V_1) \times$	6352 /	7074	V _{1"}	$V_9 + (V_8 - V_9) \times$	722 /	70
02H	V _{2'}	$V_1 + (V_0 - V_1) \times$	5724 /	7074	V _{2"}	$V_9+(V_8-V_9)x$	1350 /	70
03H	V _{3'}	$V_1 + (V_0 - V_1) \times$	5096 /	7074	V _{3"}	$V_9+(V_8-V_9)\times$	1978 /	70
04H	V _{4'}	$V_1 + (V_0 - V_1) \times$	4500 /	7074	V _{4"}	$V_9 + (V_8 - V_9) \times$	2574 /	70
05H	V _{5'}	$V_1 + (V_0 - V_1) \times$	3904 /	7074	V _{5"}	$V_9+(V_8-V_9)\times$	3170 /	70
06H	V _{6'}	$V_1 + (V_0 - V_1) \times$	3402 /	7074	V _{6"}	$V_9 + (V_8 - V_9) \times$	3672 /	70
07H	V _{7'}	$V_1 + (V_0 - V_1) \times$	2932 /	7074	V _{7"}	$V_9 + (V_8 - V_9) \times$	4142 /	70
08H	V _{8'}	$V_1 + (V_0 - V_1) \times$	2478 /	7074	V _{8"}	V ₉ +(V ₈ -V ₉)×	4596 /	70
09H	V _{q'}	$V_1 + (V_0 - V_1) \times$	2024 /	7074	V _{a"}	$V_{9}+(V_{8}-V_{9})\times$	5050 /	70
0AH	V _{10'}	$V_1 + (V_0 - V_1) \times$	1616 /	7074	V _{10"}	$V_{9}+(V_{8}-V_{9})\times$	5458 /	70
OBH	V ₁₀	$V_1 + (V_0 - V_1) \times$	1286 /	7074	V ₁₀	$V_{9}+(V_{8}-V_{9})x$	5788 /	70
0CH	V ₁₁ ' V _{12'}	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_1$	988 /	7074	V _{11"}	$V_{9}+(V_{8}-V_{9})\times$	6086 /	70
0CH	V _{12'} V _{13'}		722 /	7074				70
-		$V_1 + (V_0 - V_1) \times$		-	V _{13"}	$V_9 + (V_8 - V_9) \times$	6352 /	
0EH	V _{14'}	$V_1 + (V_0 - V_1) \times$	456 /	7074	V _{14"}	$V_9+(V_8-V_9)\times$	6618 /	70
0FH	V _{15'}	$V_1 + (V_0 - V_1) \times$	220 /	7074	V _{15"}	$V_9 + (V_8 - V_9) \times$	6854 /	70
10H	V _{16'}	V ₁			V _{16"}	V ₈		
11H	V _{17'}	$V_2 + (V_1 - V_2) \times$	2058 /	2262	V _{17"}	$V_{8}+(V_{7}-V_{8})x$	204 /	22
12H	V _{18'}	$V_2 + (V_1 - V_2) \times$	1854 /	2262	V _{18"}	$V_{8}+(V_{7}-V_{8})x$	408 /	22
13H	V _{19'}	$V_2 + (V_1 - V_2) \times$	1682 /	2262	V _{19"}	$V_{8}+(V_{7}-V_{8})x$	580 /	22
14H	V _{20'}	$V_2 + (V_1 - V_2) x$	1526 /	2262	V _{20"}	$V_{8}+(V_{7}-V_{8})x$	736 /	22
15H	V _{21'}	$V_{2}+(V_{1}-V_{2})x$	1370 /	2262	V _{21"}	$V_{8} + (V_{7} - V_{8}) \times$	892 /	22
16H	V _{22'}	$V_2 + (V_1 - V_2) x$	1228 /	2262	V _{22"}	$V_{8}+(V_{7}-V_{8})x$	1034 /	22
17H	V _{23'}	$V_2 + (V_1 - V_2) \times$	1086 /	2262	V _{23"}	$V_8 + (V_7 - V_8) \times$	1176 /	22
18H	V _{24'}	$V_2 + (V_1 - V_2) \times$	944 /	2262	V _{24"}	$V_{8} + (V_{7} - V_{8}) \times$	1318 /	22
19H	V _{25'}	$V_2 + (V_1 - V_2) \times$	802 /	2262	V _{25"}	$V_8 + (V_7 - V_8) \times$	1460 /	22
10H	V ₂₅	$V_2 + (V_1 - V_2) \times$	676 /	2262	V _{26"}	$V_8 + (V_7 - V_8) \times$	1586 /	22
18H	V ₂₆ V ₂₇	$V_2 + (V_1 - V_2) \times$	550 /	2262	V _{26"}	$V_{8} + (V_{7} - V_{8}) \times$	1712 /	22
1CH			440 /	2262			1712 /	22
-	V _{28'}	V_2 +(V_1 - V_2)×		-	V _{28"}	$V_8 + (V_7 - V_8) \times$		
1DH	V _{29'}	$V_2 + (V_1 - V_2) \times$	330 /	2262	V _{29"}	$V_8 + (V_7 - V_8) \times$	1932 /	22
1EH	V _{30'}	$V_2 + (V_1 - V_2) \times$	220 /	2262	V _{30"}	$V_8 + (V_7 - V_8) \times$	2042 /	22
1FH	V _{31'}	$V_2 + (V_1 - V_2) \times$	110 /	2262	V _{31"}	$V_8 + (V_7 - V_8) \times$	2152 /	22
20H	V _{32'}	V ₂			V _{32"}	V ₇		
21H	V _{33'}	$V_3 + (V_2 - V_3) \times$	1570 /	1680	V _{33"}	$V_7 + (V_6 - V_7) \times$	110 /	16
22H	V _{34'}	$V_3 + (V_2 - V_3) \times$	1460 /	1680	V _{34"}	$V_7 + (V_6 - V_7) \times$	220 /	16
23H	V _{35'}	$V_3 + (V_2 - V_3) \times$	1366 /	1680	V _{35"}	$V_7 + (V_6 - V_7) \times$	314 /	16
24H	V _{36'}	$V_3 + (V_2 - V_3) \times$	1272 /	1680	V _{36''}	$V_7 + (V_6 - V_7) \times$	408 /	16
25H	V _{37'}	$V_3 + (V_2 - V_3) \times$	1178 /	1680	V _{37"}	$V_7 + (V_6 - V_7) \times$	502 /	16
26H	V _{38'}	$V_{3}+(V_{2}-V_{3})x$	1068 /	1680	V _{38''}	$V_7 + (V_6 - V_7) \times$	612 /	16
27H	V _{39'}	$V_{3}+(V_{2}-V_{3})\times$	958 /	1680	V _{39"}	$V_7 + (V_6 - V_7) \times$	722 /	16
28H	V _{40'}	$V_{3}+(V_{2}-V_{3})x$	864 /	1680	V _{40"}	$V_7 + (V_6 - V_7) \times$	816 /	16
29H	V ₄₁	$V_3 + (V_2 - V_3) \times$	754 /	1680	V _{41"}	$V_7 + (V_6 - V_7) \times$	926 /	16
2AH	V ₄₂	$V_{3}+(V_{2}-V_{3})x$	660 /	1680	V _{42"}	$V_7 + (V_6 - V_7) \times$	1020 /	16
2BH	V ₄₃	$V_3 + (V_2 - V_3) \times$	550 /	1680	V _{43"}	$V_7 + (V_6 - V_7) \times$	1130 /	16
20H	V _{43'}	$V_{3}+(V_{2}-V_{3})x$	456 /	1680	V _{43"}	$V_7 + (V_6 - V_7) \times$	1224 /	16
2011 2DH	V _{44'} V _{45'}	$V_{3}+(V_{2}-V_{3})x$ $V_{3}+(V_{2}-V_{3})x$	346 /	1680	V _{44"}	$V_7 + (V_6 - V_7) \times$ V ₇ +(V ₆ -V ₇)×	1334 /	16
	· · · · ·					$V_7 + (V_6 - V_7) x$ $V_7 + (V_6 - V_7) x$		
2EH 2FH	V _{46'}	$V_3 + (V_2 - V_3) \times$	220 /	1680 1680	V _{46"} V _{47"}	$V_7 + (V_6 - V_7) \times$ $V_7 + (V_6 - V_7) \times$	1460 / 1570 /	16
	V _{47'}	$V_3 + (V_2 - V_3) \times$	110 /	1000		1 (0 1)	1370 /	16
30H	V _{48'}	V_3	4700 /	4000	V _{48"}	V_6	440	,
31H	V _{49'}	$V_4 + (V_3 - V_4) \times$	4786 /	4896	V _{49"}	$V_6 + (V_5 - V_6) \times$	110 /	48
32H	V _{50'}	$V_4 + (V_3 - V_4) \times$	4660 /	4896	V _{50"}	$V_6 + (V_5 - V_6) \times$	236 /	48
33H	V _{51'}	$V_4 + (V_3 - V_4) \times$	4534 /	4896	V _{51"}	$V_6 + (V_5 - V_6) \times$	362 /	48
34H	V _{52'}	V_4 +(V_3 - V_4)×	4408 /	4896	V _{52"}	$V_6 + (V_5 - V_6) \times$	488 /	48
35H	V _{53'}	V_4 +(V_3 - V_4)×	4266 /	4896	V _{53"}	$V_{6}+(V_{5}-V_{6})x$	630 /	48
36H	V _{54'}	V_4 +(V_3 - V_4)×	4124 /	4896	V _{54"}	$V_{6}+(V_{5}-V_{6})x$	772 /	48
37H	V _{55'}	V_4 +(V_3 - V_4)×	3998 /	4896	V _{55"}	$V_6 + (V_5 - V_6) \times$	898 /	48
38H	V _{56'}	V_4 +(V_3 - V_4)×	3810 /	4896	V _{56"}	$V_6 + (V_5 - V_6) \times$	1086 /	48
39H	V _{57'}	$V_4 + (V_3 - V_4) \times$	3622 /	4896	V _{57"}	$V_6 + (V_5 - V_6) \times$	1274 /	48
3AH	V _{58'}	$V_4 + (V_3 - V_4) \times$	3402 /	4896	V _{58"}	$V_6 + (V_5 - V_6) \times$	1494 /	48
3BH	V _{59'}	$V_4 + (V_3 - V_4) \times$	3182 /	4896	V _{59"}	$V_{6}+(V_{5}-V_{6})\times$	1714 /	48
3CH	V _{60'}	$V_4 + (V_3 - V_4) \times V_4 $	2946 /	4896	V _{60"}	$V_6 + (V_5 - V_6) \times$	1950 /	48
3DH	V _{60'}	$V_4 + (V_3 - V_4) \times V_4 + (V_3 - V_4) \times V_4$	2586 /	4896	V _{60"}	$V_6 + (V_5 - V_6) \times V_6 + (V_5 - V_6) \times V_6$	2310 /	48
5011						$V_6 + (V_5 - V_6) \times$ V ₆ +(V ₅ -V ₆)×	2874 /	40
3EH	V _{62'}	V_4 +(V_3 - V_4)×	2022 /	4896	V _{62"}			

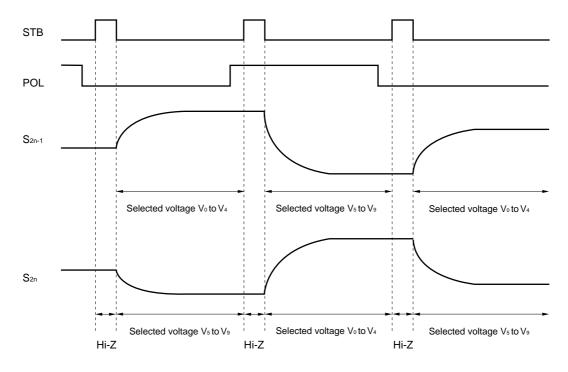
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data)

(1) $R_{J}/L = H$ (Right shift)

\ / /						
Output	S1	S ₂	S₃	S4	 S 479	S 480
Data	Doo to Dos	D10 to D15	D20 to D25	D ₃₀ to D ₃₅	 D40 to D45	D50 to D55

(2) R,/L = L (Left shift)


Output	S1	S ₂	S₃	S4	•••	S 479	S 480
Data	Doo to Dos	D10 to D15	D20 to D25	D ₃₀ to D ₃₅	•••	D40 to D45	D50 to D55

POL	Note S _{2n-1}	Note S _{2n}
L	V ₀ to V ₄	V5 to V9
Н	V₅ to V ₉	Vo to V4

Note S_{2n-1} (Odd output), S_{2n} (Even output)

★ 7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

★ 8. RELATIONSHIP BETWEEN STB, CLK AND OUTPUT WAVEFORM

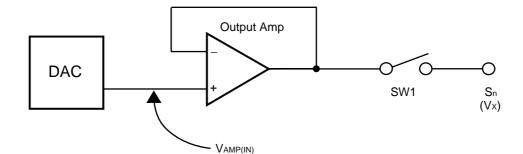
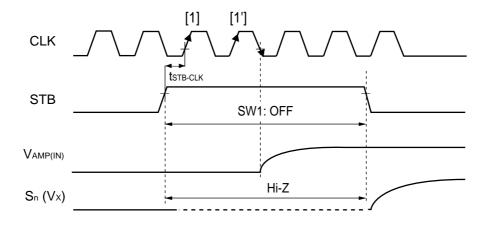



Figure 8–1. Output Circuit Block Diagram

The output voltage is written to the LCD panel synchronized with the STB falling edge.

STB = H is loaded with the rising edge of CLK [1]. However, when not satisfying the specification of $t_{STB-CLK}$, STB = H is loaded with the rising edge of the next CLK [1']. Latch operation of display data is completed with the falling edge of the next CLK which loaded STB = H. Therefore, in order to complete latch operation of display data, it is necessary to input at least 2 CLK in STB = H period. Besides, after loading STB = H to the timing of [1], it is necessary to continue inputting CLK.

9. CURRENT CONSUMPTION REDUCTION FUNCTION

The μ PD16772B has a low power control function (LPC) which can switch the bias current of the output amplifier between two levels and a bias control function (Bcont) which can be used to finely control the bias current.

• Low Power Control Function (LPC)

The bias current of the output amplifier can be switched between two levels using this pin (Bcont: Open).

LPC = H or Open: Low power mode

LPC = L: Normal power mode

The VDD2 of static current consumption can be reduced to two thirds of that in normal mode. Input a stable DC current (VDD1/VSS1) to this pin.

• Bias Current Control Function (Bcont)

It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When using this function, connect this pin to the stabilized ground potential (Vss2) via an external resistor (REXT). When not using this function, leave this pin open.

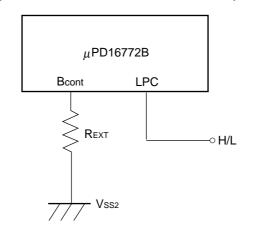


Figure 9–1. Bias Current Control Function (Bcont)

Refer to the table below for the percentage of current regulation when using the bias current control function.

Table 9–1. Current Consumption Regulation Percentage Compared to Normal Mode (VDD1 = 3.3 V, VDD2 = 8.7 V)

	Current Consumption Regulation Percentage (%)				
R ext (k Ω)	LPC = L	LPC = H/Open			
∞ (Open)	100	65			
50	120	80			
20	140	100			
0	240	210			

Remark The above current consumption regulation percentages are not product-characteristic guaranteed as they re based on the results of simulation.

Caution Because the low-power and bias-current control functions control the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using these functions, be sure to sufficiently evaluate the picture quality.

10. ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	VDD1	-0.5 to +4.0	V
Driver Part Supply Voltage	V _{DD2}	-0.5 to +10.0	V
Logic Part Input Voltage	VI1	-0.5 to V _{DD1} + 0.5	V
Driver Part Input Voltage	V _{I2}	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Voltage	Vo1	-0.5 to V _{DD1} + 0.5	V
Driver Part Output Voltage	Vo2	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	-10 to +75	°C
Storage Temperature	Tstg	-55 to +125	°C

Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	VDD1		2.3		3.6	V
Driver Part Supply Voltage	V _{DD2}		8.0	8.5	9.0	V
High-Level Input Voltage	VIH		0.7 Vdd1		V _{DD1}	V
Low-Level Input Voltage	VIL		0		0.3 VDD1	V
γ-Corrected Voltage	Vo to V4		0.5 Vdd2		Vdd2 - 0.1	V
	V5 to V9		0.1		0.5 Vdd2	V
Driver Part Output Voltage	Vo		0.1		Vdd2 - 0.1	V
Clock Frequency	fclk	V _{DD1} = 2.3 V			45	MHz

Recommended Operating Range (T_A = -10 to +75°C, Vss1 = Vss2 = 0 V)

*

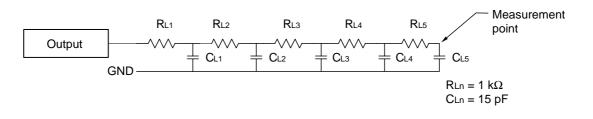
otherwise specified, the input level is defined to be LPC = L, Bcont = Open)							
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input Leak Current	lı∟	Except LPC			±1.0	μA	
		LPC	T.B.D.		T.B.D.	μA	
High-Level Output Voltage	Vон	STHR (STHL), IoH = 0 mA	Vdd1 - 0.1			V	
Low-Level Output Voltage	Vol	STHR (STHL), Io∟ = 0 mA			0.1	V	
γ -Corrected Resistance	Rγ	V_0 to $V_4 = V_5$ to $V_9 = 4.0$ V	T.B.D.	T.B.D.	T.B.D.	kΩ	
Driver Output Current	Іvон	Vx = 7.0 V, Vout = 6.5 V Note			-30	μA	
	IVOL	Vx = 1.0 V, Vout = 1.5 V Note	30			μA	
Output Voltage Deviation	ΔVo	$T_A = 25^{\circ}C$, $V_{DD1} = 3.3 V$, $V_{DD2} = 8.5 V$,		±7	±20	mV	
Output Swing Difference	ΔV_{P-P}	Vout = 2.0 V, 4.25 V, 6.5 V		±2	±15	mV	
Deviation							
Logic Part Dynamic Current	IDD1	V _{DD1}		1.0	7.5	mA	
Consumption							
Driver Part Dynamic Current	IDD2	V _{DD2} , with no load		3.5	7.5	mA	
Consumption							

Electrical Characteristics (T_A = -10 to +75°C, V_{DD1} = 2.3 to 3.6 V, V_{DD2} = 8.5 V \pm 0.5 V, V_{SS1} = V_{SS2} = 0 V, unless otherwise specified the input level is defined to be LPC = 1. Report = Open)

Note Vx refers to the output voltage of analog output pins S₁ to S₄₈₀.

Vout refers to the voltage applied to analog output pins S1 to S480.

★ **Remark** T.B.D. (To be determined.)

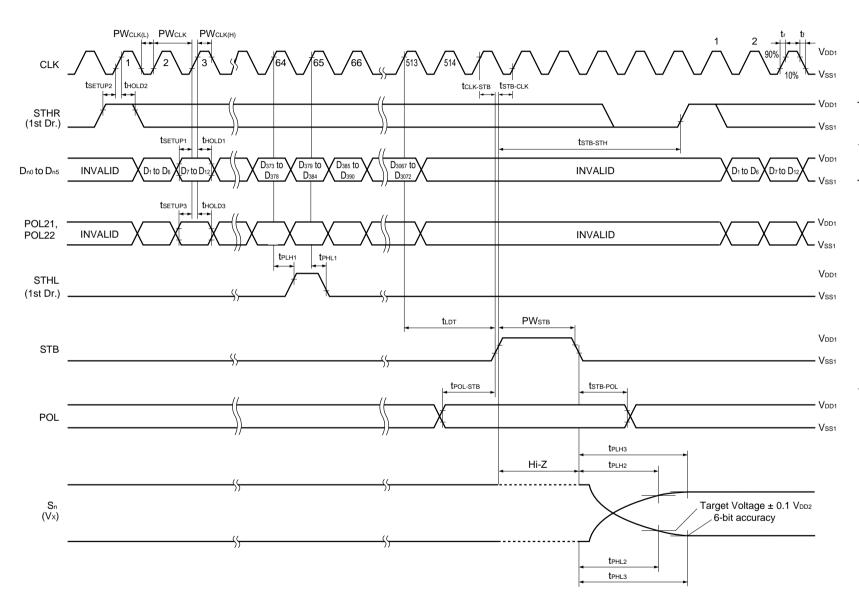

Cautions 1. $f_{STB} = 50 \text{ kHz}, f_{CLK} = 40 \text{ MHz}.$

- 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- 3. Refers to the current consumption per driver when cascades are connected under the assumption of UXGA single-sided mounting (10 units).

Switching Characteristics (TA = -10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V \pm 0.5 V, Vss1 = Vss2 = 0 V, unless
otherwise exception the input level is defined to be LDC - L. Beent - Open)

otherwise specified, the input level is defined to be LPC = L, Bcont = Open)							
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Start Pulse Delay Time	tPLH1	C∟ = 10 pF		10	20	ns	
	tPHL1			10	20	ns	
Driver Output Delay Time	tPLH2	C∟ = 75 pF, R∟ = 5 kΩ		2.5	5	μs	
	tPLH3			5	8	μs	
	tPHL2			2.5	5	μs	
	tPHL3			5	8	μs	
Input Capacitance	CI1	STHR (STHL) excluded, $T_A = 25^{\circ}C$		5	10	pF	
	CI2	STHR (STHL), T _A = 25°C		8	10	pF	

<Test Condition>


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWCLK		22			ns
Clock Pulse High Period	PWCLK(H)		4			ns
Clock Pulse Low Period	PWclk(L)	$2.3~V \leq V_{\text{DD1}} < 3.0~V$	7			ns
		$3.0~V \leq V_{\text{DD1}} \leq 3.6~V$	4			ns
Data Setup Time	tsetup1		3			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tSETUP2		3			ns
Start Pulse Hold Time	tHOLD2		0			ns
POL21, POL22 Setup Time	tsetup3		3			ns
POL21, POL22 Hold Time	thold3	$2.3~V \leq V_{\text{DD1}} < 3.0~V$	1			ns
		$3.0~V \leq V_{\text{DD1}} \leq 3.6~V$	0			ns
STB Pulse Width	PWSTB		2			CLK
Last Data Timing	t ldt		2			CLK
CLK-STB Time	tclк-sтв	$CLK \uparrow \to STB \uparrow$	6			ns
STB-CLK Time	tsтв-сlк	$\begin{array}{l} \text{STB} \uparrow \rightarrow \text{CLK} \uparrow \\ \text{2.3 V} \leq \text{V}_{\text{DD1}} < 3.0 \text{ V} \end{array}$	14			ns
		$\begin{array}{l} STB \uparrow \rightarrow CLK \uparrow \\ 3.0 \ V \leq V_{\mathsf{DD1}} \leq 3.6 \ V \end{array}$	6			ns
Time Between STB and Start Pulse	tsтв-sтн	$STB \uparrow \rightarrow STHR(STHL) \uparrow$	2			CLK
POL-STB Time	t POL-STB	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL Time	tstb-pol	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	6			ns

Remark Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 V_{DD1}$, $V_{IL} = 0.3 V_{DD1}$.

Unless otherwise specified, the input level is defined to be V_{IH} = 0.7 V_{DD1}, V_{IL} = 0.3 V_{DD1}.

11. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16772B.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.

μ PD16772BN-xxx: TCP (TAB Package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100 g
		(per solder)
	ACF	Temporary bonding 70 to 100°C : pressure 3 to 8 kg/cm ² : time 3 to 5
	(Adhesive	sec. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm ² : time 30 to
	Conductive Film)	40 sec. (When using the anisotropy conductive film SUMIZAC1003 of
		Sumitomo Bakelite, Ltd).

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System(C10983E) Quality Grades On NEC Semiconductor Devices(C11531E)

- The information in this document is current as of July 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).